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Extending the parameter space of the three-dimensional �d=3� Ising model, we search for a regime of
eliminated corrections to finite-size scaling. For that purpose, we consider a real-space renormalization group
�RSRG� with respect to a couple of clusters simulated with the transfer-matrix �TM� method. Imposing a
criterion of “scale invariance,” we determine a location of the nontrivial RSRG fixed point. Subsequent
large-scale TM simulation around the fixed point reveals eliminated corrections to finite-size scaling. As
anticipated, such an elimination of corrections admits systematic finite-size-scaling analysis. We obtained the
estimates for the critical indices as �=0.6245�28� and yh=2.4709�73�. As demonstrated, with the aid of the
preliminary RSRG survey, the transfer-matrix simulation provides rather reliable information on criticality
even for d=3, where the tractable system size is restricted severely.

DOI: 10.1103/PhysRevE.74.016120 PACS number�s�: 64.60.�i, 05.50.�q, 05.10.Cc, 05.10.�a

I. INTRODUCTION

The transfer-matrix method has an advantage over the
Monte Carlo method in that it provides information free from
the statistical �sampling� error and the problem of slow re-
laxation to thermal equilibrium. On one hand, the tractable
system size with the transfer-matrix method is severely lim-
ited, because the transfer-matrix size increases exponentially
as the system size N enlarges; here, N denotes the number of
spins constituting a unit of the transfer-matrix slice. Such a
limitation becomes even more serious in large dimensions
�d�3�. Actually, for large d, the system size N �=Ld−1� in-
creases rapidly as the linear dimension L enlarges, and it
soon exceeds the limit of available computer resources. Be-
cause of this difficulty, the usage of the transfer-matrix
method has been restricted mainly within d=2.

In this paper, we report an attempt to eliminate the finite-
size corrections of the d=3 Ising model by tuning the inter-
action parameters. As anticipated, such an elimination of cor-
rections admits systematic finite-size-scaling analysis of the
numerical data with restricted system sizes. To be specific,
we consider the d=3 Ising ferromagnet with extended inter-
actions,

H = − JNN�
�i,j�

SiSj − JNNN �
��i,j��

SiSj − J� �
�i,j,k,l�

SiSjSkSl, �1�

where the Ising spins Si= ±1 are placed at the cubic-lattice
points specified by the index i. The summations ��i,j�, ���i,j��,
and ��i,j,k,l� run over all nearest-neighbor pairs, next-nearest-
neighbor �plaquette diagonal� spins, and round-a-plaquette
spins, respectively. Within the extended parameter space
�JNN ,JNNN ,J��, we search for a regime of eliminated correc-
tions to scaling. For that purpose, we consider a real-space
renormalization group for a couple of clusters, whose ther-
modynamics is simulated with the transfer-matrix method;
see Fig. 1. We then determine a location of the
renormalization-group fixed point. Following this prelimi-
nary renormalization-group survey, we perform extensive
transfer-matrix simulation around this fixed point. Thereby,
we show that the corrections-to-scaling behavior is improved

around the fixed point. Here, we utilized an improved ver-
sion of the transfer-matrix method �1–7�, and succeeded in
treating a variety of system sizes N=5,6 , . . . ,15; note that
conventionally, the tractable system sizes are restricted to
N=4,9 ,16, . . .. Apparently, such an extension of available
system sizes provides valuable information on criticality.

In fairness, it has to be mentioned that our research owes
its basic idea to the following pioneering studies. First, an
attempt to eliminate the finite-size corrections was reported
in Ref. �8�, where the authors investigate the d=3 Ising
model with the �finely tuned� second- and third-neighbor in-
teractions; see also the studies �9–11� in the lattice-field-
theory context. Their consideration could be viewed as an
interesting application of the Monte Carlo renormalization
group �12� to exploit the virtue of the fixed point. �The
Monte Carlo renormalization group provides an explicit re-
alization of the renormalization-group idea in the real space.�
The aim of this paper is to develop an alternative approach to
the elimination of corrections via the transfer-matrix method,

FIG. 1. A schematic drawing of our real-space renormalization
group �decimation� for the d=3 Ising model with the extended in-
teractions Eq. �1�. As indicated, the thermodynamics is simulated
with the transfer-matrix method. Imposing a criterion of scale in-
variance, Eq. �4�, we determined the renormalization-group fixed
point Eq. �7� numerically; see text for details.
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and make the best use of its merits and characteristics. In
fact, the four-spin interaction, appearing in our Hamiltonian
�1�, is readily tractable with the transfer-matrix method,
whereas it can make a conflict with the Monte Carlo simu-
lation; in fact, the four-spin interaction disables the use of
cluster update. �Probably, as for the Monte Carlo simulation,
it might be more rewarding to enlarge the system size rather
than incorporate extra interactions.� Second, the extended in-
teractions appearing in our Hamiltonian �1� are taken from
the proposal by Ma �13�, who investigated the d=2 Ising
model and its renormalization-group flow. We consider that
his renormalization-group scheme for d=2 is still of use to
our d=3 case as well. Actually, in our transfer-matrix treat-
ment, the system size along the transfer-matrix direction is
infinite, and the remaining d=2 fluctuations are responsible
for the finite-size corrections. We demonstrate that Ma’s
scheme leads to satisfactory elimination of finite-size correc-
tions in d=3.

The rest of this paper is organized as follows. In Sec. II,
we explain the real-space decimation �renormalization
group� for the d=3 Ising model �1�, and search for its fixed
point. In Sec. III, we perform extensive transfer-matrix simu-
lation around this fixed point. Here, we utilized an improved
transfer-matrix method, which is explicated in the Appendix.
The last section is devoted to summary and discussions.

II. SEARCH FOR A SCALE-INVARIANT POINT: A
REGIME OF ELIMINATED IRRELEVANT INTERACTIONS

In this section, we search for a point of eliminated finite-
size corrections of the extended Ising model, Eq. �1�. For that
purpose, we set up a real-space renormalization group, and
look for the scale-invariant �fixed� point; the result is given
by Eq. �7�.

To begin with, we set up the real-space renormalization
group. We consider a couple of rectangular clusters with the
sizes 2�2 and 4�4; see Fig. 1. These clusters are labeled
by the symbols S and L, respectively. �Because we utilize the
transfer-matrix method, the system sizes perpendicular to
these rectangles are both infinite.� Decimating out the spin
variables indicated by the symbol � of the L cluster, we
obtain a reduced lattice structure identical to that of the S
cluster. Our concern is to find a “scale invariance” condition
with respect to this real-space renormalization group.

Before going into the explicit formulation of the renor-
malization group �fixed-point analysis�, we explain briefly
how we simulated the thermodynamics of these clusters. As
mentioned above, we employ the transfer-matrix method.
The transfer-matrix elements for the S cluster are given by
the formula

T�Ti	,�Si	
= �WS1S2

S3S4�1+3b�WS1S2

T1T2WS2S4

T2T4WS4S3

T4T3WS3S1

t3T1 �1+b, �2�

where the component WS1S2

S3S4 denotes the local Boltzmann
weight for a plaquette, Eq. �A3�, and the spin variables �Si	
and �Ti	 �i=1–4� denote the spin configurations for both
sides of the transfer-matrix slice. The component �¯�1+3b

originates in the plaquette interactions perpendicular to the
transfer-matrix direction, whereas the remaining part �¯�1+b

comes from the longitudinal ones. The parameter b controls
the boundary interaction strength. Note that irrespective of b,
the periodic boundary condition is maintained; namely, all
2�2 spins remain equivalent as b varies. Such a redundancy
is intrinsic to the L=2 system. Here, we consider this redun-
dant parameter as a freely tunable one. �For example, a
naive implementation of the periodic boundary condition for
a pair of spins may result in such an interaction as
H=−JS1S2−JS2S1=−2JS1S2. Clearly, such a duplicated in-
teraction is problematic. Possibly, the interaction −�1
+b�JS1S2 with a certain moderate parameter b should be a
favorable one. The significant point is that the periodic
boundary condition is maintained with b varied.� We found
that the choice b=0.4 is reasonable for the reasons men-
tioned afterward.

Similarly to the above, we constructed the transfer matrix
for the L cluster as

T�Tij	,�Sij	
= 


1�i,j�4
�WSijSi+1,j

Si,j+1Si+1,j+1WSijSi+1,j

TijTi+1,jWSijSi,j+1

TijTi,j+1� , �3�

with the 4�4 spin configurations �Sij	 and �Tij	 under the
periodic boundary condition. In this case �L=4�, we have no
ambiguity as to the boundary interaction.

Based on the above-mentioned simulation scheme, we
calculate the location of the renormalization-group fixed
point. We impose the following scale-invariance conditions:

�S1S2�S = �S1S2�L, �4�

�S1S4�S = �S1S4�L, �5�

�S1S2S3S4�S = �S1S2S3S4�L. �6�

Here, the symbol �¯�S�L� denotes the thermal average for the
S �L� cluster, and the arrangement of spin variables �Si	 is
shown in Fig. 1. We solved the above equations numerically,
and found that a nontrivial solution does exist at

�J̃NN, J̃NNN, J̃�� = �0.108 982 866 643 5,0.044 577 772 795 6,

− 0.006 511 795 049 2� . �7�

The last digits may be uncertain due to the numerical round-
off errors. The result is to be compared with that of

the preceding Monte Carlo study �J̃NN , J̃NNN , J̃3rd�
= �0.1109,0.033 08,0.014 02� �8�, where the authors incor-

porated the third-neighbor interaction J̃3rd and omitted J̃�

instead.
Let us make a few comments. First, in the next section,

we confirm that the fixed point is indeed a good approximant
to the phase-transition point. This fact indicates that the
above renormalization-group analysis is sensible. Moreover,

we calculated the fixed point J̃NN=0.224 390 442 310 6 for
the conventional Ising model �JNNN ,J��= �0,0�. We again
see that this transition point is in agreement with a critical
point JNN

* =0.221 654 55�3� determined with the Monte Carlo
method �14�. �Hence, the choice of the boundary interaction
strength b=0.4 is justified.� Second, we stress that the above
renormalization group is not intended to obtain a �quantita-
tively reliable� critical point nor the critical indices. The aim
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of the above analysis is to truncate out the irrelevant inter-
actions. The detailed analysis of criticality is made with the
subsequent finite-size-scaling analysis. In other words, our
numerical approach consists of two steps, and the remaining
step is considered in the next section.

III. FINITE-SIZE-SCALING ANALYSIS
OF THE CRITICAL EXPONENTS � AND yh

In Sec. II, we determined the position of the
renormalization-group fixed point, Eq. �7�. In this section,
around the fixed point, we survey the criticality of the
temperature-driven phase transition. That is, hereafter, we
dwell on the one-parameter subspace

�JNN,JNNN,J�� = JNN�1,
J̃NNN

J̃NN

,
J̃�

J̃NN

� , �8�

which contains the renormalization-group fixed point at

JNN= J̃NN. We anticipate that corrections to scaling �influence
of irrelevant operators� should be suppressed in this param-
eter space.

Throughout this section, we employ an improved version
of the transfer-matrix method �Novotny’s method� �1�. �To
avoid confusion, we stress that in Sec. II, we used the con-
ventional transfer-matrix method.� A benefit of Novotny’s
method is that we are able to treat an arbitrary �integral�
number of spins N=5,6 , . . . ,15, constituting a unit of the
transfer-matrix slice; note that conventionally the number of
spins is restricted to N=4,9 ,16, . . .. We explicate this simu-
lation algorithm in the Appendix.

A. Eliminated corrections to scaling

In Fig. 2, we plotted the scaled correlation length � /L for
JNN and a variety of system sizes N=5,6 , . . . ,15. We evalu-
ated the correlation length � with use of the formula
�=1/ ln��1 /�2� with the dominant �subdominant� eigenvalue
�1 ��2� of the transfer matrix. As explained in the Appendix,
the linear dimension L is simply given by

L = N , �9�

with the number of spins N; see Fig. 8.
From Fig. 2, we see a clear indication of criticality at

JNN�0.11; note that the intersection point of the curves in-
dicates a critical point. Afterward, we compare this result to
that of the conventional Ising model �JNNN ,J��= �0,0� to
elucidate the improvement of the scaling behavior. Here, we
want to draw the reader’s attention to the point that we
treated various system sizes N=5,6 , . . . ,15 with the aid of
the Novotny method. Actually, in Fig. 2, we notice that a
variety of system sizes are available. Clearly, such an exten-
sion of available system sizes is significant in the subsequent
detailed finite-size-scaling analyses.

In Fig. 3, we present the scaling plot �JNN−JNN
* �L1/�

−� /L for 12�N�15. with the scaling parameters JNN
*

=0.110 59 and �=0.6245 determined in Figs. 5 and 6, re-
spectively. We see that the data collapse into a scaling func-
tion satisfactorily; actually, we can hardly observe correc-
tions to the finite-size scaling.

In the above, we presented evidence that the corrections-
to-scaling behavior is improved in the parameter space Eq.
�8�. Lastly, as a comparison, we provide the data for the
conventional Ising model; namely, we set �JNNN ,J��= �0,0�

FIG. 2. Scaled correlation length � /L is plotted for the nearest-
neighbor interaction JNN and N=5,6 , . . . ,15 �N=L2�; note that we
survey the parameter space �8� including the renormalization-group
fixed point �7�. We observe a clear indication of criticality at
JNN�0.11. Apparently, the finite-size-scaling behavior is improved
as compared to that of Fig. 4 for the conventional Ising model.

FIG. 3. The scaling plot for the correlation length,
�JNN−JNN

* �L1/�−� /L, is shown for the system sizes N= �+� 12, ���
13, �*� 14, and ��� 15; note the relation N=L2. Here, we accepted
the scaling parameters, JNN

* =0.110 59 and �=0.6245, determined in
Figs. 5 and 6, respectively. We again confirm that corrections to
scaling are suppressed significantly.

FIG. 4. Tentatively, we turned off the extended interactions
�JNNN=0 and J�=0�, and calculated the scaled correlation length
� /L for various JNN and N=5,6 , . . . ,15. We notice that the data are
scattered as compared to those in Fig. 2.
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tentatively. In Fig. 4, we plotted the scaled correlation length
� /L for various JNN. Apparently, the data suffer from a in-
systematic finite-size corrections. The data scatter obscures
the position of the critical point. �Nevertheless, we should
mention that the data imply JNN

* �0.2, which does not con-
tradict a recent Monte Carlo result JNN

* =0.221 654 55�3�
�14�.�

B. Phase-transition point JNN
*

In the above, we obtain a rough estimate for the phase-
transition point JNN

* . In this section, we determine the transi-
tion point more precisely. In Fig. 5, we plotted the approxi-
mate transition point JNN

* �L1 ,L2� for �2/ �L1+L2��2. Here, the
approximate transition point denotes the intersection point of
the curves � /L �Fig. 2� for a pair of system sizes �L1 ,L2�
�5�N1	N2�15�. That is, the following equation:

�L1��L1��JNN=JNN
* �L1,L2� = �L2��L2��JNN=JNN

* �L1,L2� �10�

holds. In Fig. 5, we notice that the data exhibit suppressed
systematic finite-size deviation, namely, the ansystematic
data scatter is more conspicuous than the systematic devia-
tion. The least-squares fit to these data yields the transition
point

JNN
* = 0.110 59�52� �11�

in the thermodynamic limit L→
.
In order to check the reliability, we replaced the abscissa

scale with �2/ �L1+L2���+1/� �15�, where we used 1/�
=1.5868�3� and �=0.821�5� reported in Ref. �14�. �In the

next section, we present a consideration of the abscissa
scale.� Thereby, we arrive at JNN

* =0.110 62�43�, which is
consistent with the above result. �The error margin may be
purely statistical.� We confirm that the choice of the abscissa
scale is not very influential.

We notice that the transition point JNN
* �11� and the

renormalization-group fixed point J̃NN �7� are in good agree-
ment with each other. This fact confirms that the
renormalization-group analysis in Sec. II is indeed sensible.
As mentioned in Sec. II we do not require fine accuracy as to

the convergence of JNN
* and J̃NN. The aim of the

renormalization-group analysis is to search for a regime of
eliminated corrections rather than to obtain the precise loca-
tion of the fixed point. The detailed analysis of criticality is
performed in the subsequent finite-size-scaling analysis as
demonstrated in the next section. �Actually, by tuning the
boundary interaction parameter b �see Sec. II�, we could at-

tain better agreement between JNN
* and J̃NN. However, such a

refinement does not affect the subsequent finite-size-scaling
analysis very much.�

C. Critical exponents � and yh

In Sec. III A, we presented evidence of eliminated finite-
size corrections. Encouraged by this result, in this section,
we evaluate the critical exponents � and yh with use of the
finite-size-scaling method �phenomenological renormaliza-
tion group� �16�.

In Fig. 6, we plotted the approximate correlation-length
critical exponent

��L1,L2� = ln�L1/L2� � ln�� ����L1�/L1�
�JNN

� ����L2�/L2�
�JNN

��
JNN=JNN

* �L1,L2�
�12�

for 2 / �L1+L2� with 5�N1	N2�15. With use of the least-squares fit to these data, we obtain the estimate

� = 0.6245�28� �13�

in the thermodynamic limit. The data in Fig. 6 exhibit appreciable systematic finite-size corrections. More specifically, the
systematic deviation ��2% � is almost comparable to the insystematic data scatter. �This fact indicates that we cannot fully

FIG. 5. The approximate critical interaction JNN
* �L1 ,L2� is

plotted for �2/ �L1+L2��2 with 5�N1	N2�15 �L1,2=N1,2�. The
least-squares fit to these data yields JNN

* =0.110 59�52� in the ther-
modynamic limit L→
.

FIG. 6. The approximate correlation-length critical exponent

��L1 ,L2� is plotted for 2 / �L1+L2� with 5�N1	N2�15
�L1,2=N1,2�. The least-squares fit to these data yields �
=0.6245�28� in the thermodynamic limit L→
.
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truncate out the irrelevant interactions within the parameter space �JNN ,JNNN ,J��.� In this sense, the above �extrapolated�
value, Eq. �12�, may contain a systematic �biased� error. Afterward, we present a few considerations on the extrapolation
scheme. �Because our work is methodology oriented, we supply the least-squares-fit result as it is.�

In Fig. 7, we plotted the approximate exponent yh,

yh�L1,L2� = ln�� �2���L1�/L1�
�H2 � �2���L2�/L2�

�H2 ��
JNN=JNN

* �L1,L2�
� �2 ln�L1/L2�� , �14�

for 2 / �L1+L2� with 5�N1	N2�15. In order to incorporate
the magnetic field H, we added the Zeeman term, −H�iSi, to
the Hamiltonian �1�. Rather satisfactorily, the data yh�L1 ,L2�
exhibit suppressed systematic corrections; the systematic de-
viation is almost negligible compared to the insystematic
one. The least-squares fit to these data yields the estimate

yh = 2.4709�73� �15�

in the thermodynamic limit.
Provided by the above estimates � and yh, we obtain the

following critical indices through the scaling relations:

 = 0.1265�84� , �16�

� = 0.3304�48� , �17�

� = 1.213�11� . �18�

Let us provide comparative results with an alternative ex-
trapolation scheme. We replaced the scale of abscissa in Figs.
6 and 7 with �2/ �L1+L2���; here, we set the exponent
�=0.821�5� reported in Ref. �14�. �As mentioned below, this
scheme may overestimate the amount of systematic finite-
size corrections.� Accepting this abscissa scale, we arrive at
�=0.6216�34� and yh=2.4694�90�. These values appear to be
consistent with the above ones within the error margins, con-
firming that the extrapolation scheme is not very influential.

We argue the underlying physics of the abscissa scale �ex-
trapolation scheme� in detail. In principle, the exponent �
governs the dominant �systematic� finite-size corrections. On
the other hand, in the present simulation, we are trying to

truncate out such systematic corrections. Hence, in our data
analysis, the usage of the exponent � would be problematic.
We consider that the systematic corrections should obey the
scaling law like L−�ef f with a certain effective exponent
�ef f ��, at least in the regime of 5�N�15; namely, we
suspect that the abscissa scale with the exponent � leads to
an overestimation of systematic corrections. Actually, a re-
cent Monte Carlo simulation reports the estimates �
=0.630 20�12� and yh=2.4816�1� �14�. Here, we notice that
their � indicates a non-negligible deviation, whereas the
value of yh is in good agreement with ours. This fact con-
firms the above observation that ��L1 ,L2� exhibits appre-
ciable systematic corrections, and the extrapolated value may
contain a biased error. Possibly, an adequate exponent �ef f
would be even larger than the value �ef f =1 utilized in Fig. 6.
Nevertheless, for the sake of simplicity, we do not pursue
this issue further, and supply the least-squares-fit result as it
is.

Lastly, we mention a recent extensive exact-
diagonalization result by Hamer �17�, who obtained �
=0.628 54�79� and yh=2.482�10�. He investigated the quan-
tum d=2 transverse-field Ising model, relying on the belief
that the quantum d=2 Ising model should belong to the same
universality class as the d=3 Ising ferromagnet. The quan-
tum version has an advantage in that the Hamiltonian ele-
ments are sparse �few nonzero elements�, and one is able to
treat a large cluster size 6�6. Comparing our data with his
results, we notice that they are almost comparable with each
other. Actually, the error margin of our yh is even smaller
than his result, although we treated the d=3 ferromagnet
directly.

IV. SUMMARY AND DISCUSSIONS

So far, it has been considered that the transfer-matrix
method would not be very useful for problems in d�3 be-
cause of its severe limitation as to tractable system size. In
this paper, we demonstrated that the corrections-to-scaling
behavior of the d=3 Ising model �1� is improved by adjust-
ing the coupling constants to the values of the
renormalization-group fixed point, Eq. �7�. Actually, correc-
tions to scaling in Figs. 2 and 3 are eliminated significantly
as compared to those in Fig. 4 for the conventional Ising
model. Moreover, we succeeded in treating a variety of sys-
tem sizes N=5,6 , . . . ,15 with the aid of the Novotny method
�see the Appendix�; note that with the conventional
approach, the available system sizes are restricted to

FIG. 7. The approximate critical exponent yh�L1 ,L2� is plotted
for 2 / �L1+L2� with 5�N1	N2�15 �L1,2=N1,2�. The least-
squares fit to these data yields yh=2.4709�73� in the thermodynamic
limit L→
.
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N=4,9 ,16, . . .. Clearly, such an extension of available sys-
tem sizes provides valuable information on criticality. Owing
to these improvements, we analyzed the criticality of the d
=3 Ising model with the transfer-matrix method, and ob-
tained the critical indices �=0.6245�28� and yh=2.4709�73�.

As mentioned in the Introduction, an attempt to eliminate
finite-size corrections has been pursued �8� in the context of
the Monte Carlo renormalization group �12�. We consider
that an approach with the transfer-matrix method is also of
use because of the following reasons. First, we accepted a
simple renormalization-group scheme shown in Fig. 1. As
mentioned in the Introduction, this scheme was introduced
originally as for the d=2 Ising model �13�. The advantage of
the transfer-matrix method is that the system size along the
transfer-matrix direction is infinite, and the remaining d=2
fluctuations are responsible for the finite-size corrections.
Hence, such a �d=2�-like renormalization group is still of
use to achieve elimination of corrections satisfactorily. Sec-
ond, the transfer-matrix method is capable of the four-spin
interaction appearing in our Hamiltonian �1�. On the other
hand, the Monte Carlo sampling conflicts with such a multi-
spin interaction, because the multispin interaction disables
the use of a cluster-update algorithm. �Probably an effort
toward enlarging the system size would be rewarding from a
technical viewpoint.�

In addition to these merits, we would like to emphasize
again the point that the transfer-matrix approach with the
Novotny method allows us to treat a variety of system sizes
N=5,6 , . . . ,15. We consider that Novotny’s method com-
bined with the elimination of finite-size corrections would be
promising to resolve the �seemingly intrinsic� drawback of
the transfer-matrix method in d�3. As a matter of fact, the
basic idea of the present scheme would be generic, and it
might have a potential applicability to a wide class of sys-
tems. An effort toward this direction is in progress, and it
will be addressed in future study.
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APPENDIX: NOVOTNY’S TRANSFER-MATRIX METHOD

We explain the details of the transfer-matrix method uti-
lized in Sec. III. �To avoid confusion, we remind the reader
that in Sec. II, we utilized the conventional transfer-matrix
method.� Our method is based on Novotny’s formalism
�1–4�, which enables us to consider an arbitrary �integral�
number of spins "N, constituting a unit of the transfer-
matrix slice even for d�3; note that conventionally, the
number of spins is restricted to N=4,9 ,16, . . .. We made a
modification to the Novotny formalism in order to incorpo-
rate the plaquette-type interactions. We already reported this
method in Ref. �5�, where we studied the multicriticality of
the extended d=3 Ising model �18�. In the present paper, we
implemented yet further modifications such as Eqs.
�A8�–�A10�. Hence, for the sake of self-consistency, we ex-
plicate the full details of the simulation scheme.

Before going into details, we mention the basic idea of the
Novotny method. In Fig. 8, we presented a schematic draw-
ing of a unit of the transfer-matrix slice. Note that in general,
a transfer-matrix unit for a d-dimensional system should
have a �d−1�-dimensional structure, because it is a cross
section of the d-dimensional manifold. However, as shown in
Fig. 8, the constituent N spins form a d=1 �coiled� alignment
rather than d=2. The dimensionality is raised effectively to
d=2 by the N th-neighbor interactions among these N
spins; this is the essential idea of the Novotny method to
constitute a transfer-matrix unit with arbitrary number of
spins even for d=3.

In the following, we present the explicit formulas for the
transfer-matrix elements. We decompose the transfer matrix
into the following three components:

T�v� = T�leg��T�planar��v��T�rung��v� , �A1�

where the symbol � denotes the Hadamard �element by el-
ement� matrix multiplication. Note that the product of local
Boltzmann weights gives rise to the global one. The physical
content of each component is shown in Fig. 8.

The explicit expression for the element of T�leg� is given
by the formula,

Tij
�leg� = �i�A�j� = WS�i,1�S�i,2�

S�j,1�S�j,2�WS�i,2�S�i,3�
S�j,2�S�j,3�

¯ WS�i,N�S�i,1�
S�j,N�S�j,1�,

�A2�

where the indices i and j specify the spin configurations of
both sides of the transfer-matrix slice. More specifically, the
spin configuration �S�i ,1� ,S�i ,2� , . . . ,S�i ,N�	 is arranged
along the leg; see Fig. 8. The factor WS1S2

S3S4 denotes the local
Boltzmann weight for the plaquette spins �Si	 �i=1–4�;

FIG. 8. A schematic drawing of a unit of the transfer-matrix
slice for the d=3 Ising model with the extended interactions �1�.
The contributions from the “leg,” “planar,” and “rung” interactions
are considered separately; see Eq. �A1�. Within the transfer-matrix
slice, the arrangement of the constituent spins is one dimensional
�coiled structure�. The dimensionality is raised up to d=2 by the
bridges between the Nth-neighbor spins along the leg.
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WS1S2

S3S4 = exp�− �−
JNN

4
�S1S2 + S2S4 + S4S3 + S3S1�

−
JNNN

2
�S1S4 + S2S3� −

J�

2
S1S2S3S4�� . �A3�

Notably enough, the component T�leg� is nothing but a trans-
fer matrix for the d=2 Ising model. The remaining compo-
nents T�planar� and T�rung� introduce the Nth-neighbor cou-
plings, and raise the dimensionality effectively to d=3.

The component T�planar� is given by

Tij
�planar��v� = �i�APv�i� , �A4�

with

v = N , �A5�

where the matrix P denotes the translation operator; namely,
the state P�i� represents a shifted configuration �S�i ,m+1�	.
Hence, the insertion of PN introduces the Nth-neighbor
interactions among the N spins �1�. Similarly, we propose the
following expression for the component T�rung�:

Tij
�rung��v� = ��i� � �j��B��Pv�i�� � �Pv�j��� , �A6�

with,

��i� � �j��B��k� � �l�� = 

m=1

N

WS�i,m�S�j,m�
S�k,m�S�l,m�. �A7�

The meaning of the formula should be apparent from Fig. 8.
The above formulations were already reported in Ref. �5�.

In the following, we propose a number of additional im-
provements. First, we symmetrize the transfer matrix with
the replacement �2�

T�v� → T�v��T�− v� . �A8�

Correspondingly, we substitute the strength of the coupling
constants J→J /2 in order to compensate the above dupli-
cation. Clearly, with the symmetrization, the symmetry of
descending �m=N ,N−1, . . . � and ascending �m=1,2 , . . . � di-
rections is restored. Moreover, we implement the following
symmetrizations:

�i�APv�i� → �i�APv�i��i�P−vA�i� �A9�

and

��i� � �j��B��Pv�i�� � �Pv�j���

→ ��i� � �j��B��Pv�i�� � �Pv�j������i�P−v�

� ��j�P−v��B��i� � �j�� �A10�

as to Eqs. �A4� and �A6�, respectively. Again, we have to
redefine the coupling constants to compensate the duplica-
tion.
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